

EPAct Program Update for DOE

Status and Budget

March 4, 2009

_

Status of Testing and Fuel Blending

545OneDrive2_00019441

- Phase 1 testing complete
- 75°F testing of 19 vehicles on 3 fuels (E0, E10, E15)
- Interim FTP-cycle testing complete
- 75°F testing of 6 vehicles on 3 fuels (E0, E10, E15)
- Phase 2 testing complete
- 50°F testing of 19 vehicles on 3 fuels (E0, E10, E15)
- Currently preparing to launch Phase 3 (main fuel matrix) with reduced scope due to uncertain funding
- 75°F testing of 10? (originally19) vehicles on 26 fuels (E0, E10, E15, E20)
- Test fuel development being done by Haltermann and ASD
- EPA defines fuel recipes
- Haltermann prepares hand blends, bulk blends and performs fuel analyses
- 22 of the 26 fuels needed in Phase 3 have been blended in bulk
- 13 have been delivered to SWRI

Test Results to Date

Preliminary Results for 75°F

- Decrease in cold start NOx for E10 and E15 compared to E0
- No statistically significant change in overall NOx emission for composite drive cycle
- Decrease in CO and HC emissions in composite drive cycle
- PM results are mixed, no clear trends
- Acetaldehyde and ethanol emissions increase with fuel ethanol level

Findings are consistent with DOE's mid-level blends report

Do Not Cite or Distribute

Do Not Cite or Distribute

Phase 1 Criteria Emission Impacts (Categorical Analysis via Mixed Model, p≤0.05 or p≤0.10)

						PM	C 02	NMHC	8	THC	NOX		
							-1.5	-13.3	-14.6	_ _ _ _	-21.6	Bag 1	E10 v
PM	NMHC CO2	8 H	NOX			-17.3	-1.3					Bag 2	s. E0 Relati
	0.7			Bag 1	E15	30.4	-1.0	-38.1	-35.6	-27.8		Bag 3	E10 vs. E0 Relative Difference (%
				Bag 2	vs. E10 Re		-1,3	-12.8	-13.8	-10.2		Comp	ce (%)
				Bag 3	E15 vs. E10 Relative Difference	24.8	-0.8		-16.4		-18.3	Bag 1	E15 vs
18.5	9			Comp	enc <u>e (%)</u>		-0.9	NERODANIEN ANIANIEN BERNERE BERNERE BERNERE STERLEN				Bag 2	s. E0 Relativ
		Harris VI			T	59.4	-0.6	-35.4	-30.5			Bag 3	E15 vs. E0 Relative Difference (%
							-0.9	-14.5	-13.3	-9.8		Comp	ce (%)

Effects on Key Toxics

 Ω

Example of modal and OBD data showing source of emissions changes between E0 and E10 fuels for one vehicle

Caveats to Phase 1 Results

- look in an RFS2 world Phase 1 fuels were chosen to approximately represent how in-use ethanol blends might
- Goal was to get a preview of ethanol impacts for RFS2 proposal
- However, multiple properties change between these fuels besides ethanol level
- Resulting dataset cannot be used to assign quantified emission effects to ethanol specifically without the rest of the data from Phase 3
- Meaningful fuel effects modeling cannot be done using resulting dataset alone

DDODEDIV	HINI I			FUEL	
FROTERII	CIVI	MELLOD	E0	E10	E15
Ethanol Content	% .lov	D5599	<0.1	9.35	14.5
T50	Jo	D86	215	209	182
T90	Jo	D86	324	319	310
RVP	psi	D5191	9.17	9.05	8.91
Aromatics	vol. %	D1319	29.3	22.9	18.7
Olefins	% lov	D1319	6.4	5.7	5.6
Benzene	% .lov	D3606	0.48	0.49	0.46
S	mg/kg	D5453	23	23	21
RON	-	D2699	93.4	93.7	93.9
MON	-	D2700	83.5	84.9	84.6
(R + M)/2	1	Calc.	88.5	89.3	89.2

Current program cost estimates significantly exceed original Fuel cost increase (modified fuel development protocor): **Ex. 4 - CBI** Unrealistically low original cost estimates by SWRI Underestimation of base program cost : { Ex. 4 - CBI Higher than originally estimated test replication rate: Ex. 4 - CBI Base program cost estimate went up by **Ex. 4 - CBI** between January 7, 2009 and February 5, 2009 Additional checkout tests to resolve HC analyzer saturation and secondary dilution ratio issues in Phase 2: **Ex. 4 - CBI** Unexpectedly high cost of "coming up to speed": Ex. 4 - CBI Budget Considerations Going Forward

Current shortfall Ex. 4 - CBI

FTP testing: Ex. 4 - CBI

Additional tasks

EFM resolution; Ex. 4 - CBI

Fuel matrix redesign: Ex. 4 - CBI

projections

Options to Reduce Cost

- Delay testing of CRC fuels: \$195,000
- Reduce the number of test fuels
- Reduction of the number of fuels by 1 would drop the G-efficiency of emission models below the minimum acceptable limit of 50%
- Coverage drops, fuel effects become confounded very fast
- Reduce the number test vehicles
- Reduction of the number of vehicles from 19 to 15 doubles the probability of in AutoOil) getting a non-significant result in emission models. The power of the statistical test of 0.80 is the lowest acceptable in std practice (0.95 was used
- Reducing the number of test replicates from 2 to 1 has an even stronger Impact
- Eliminate continuous THC, NOx... measurements in raw exhaust
- Would make critical types of information unavailable
- Minimal savings
- Reduce the scope of exhaust HC speciation
- Data necessary for AQ modeling and toxic emission factors
- Phase I and II data not adequate due to fuel blending problems
- Work with SWRI to reduce program cost
- Obtain additional EPA funds
- Request additional DOE SURPORT or Distribute

EPAct Cost Estimator

ltem	Cost	Comments
Cost of Phase 3 (lower limit) - EPA estimate		
Funds currently available from the EPA		
Additional funds from EPA		TBD
Funds "released" by DOE due to reduced scope of Phase 3		
Additional funds from DOE	•	TBD
Scaling back of the number of vehicles to 15	Ex. 4 - CBI	
Scaling back of exhaust HC speciation by 50%		
Elimination of continuous THC, NOx measurements in raw exhaust		minimal
Total		
Additional funding needed to test 15 vehicles while scaling back HC speciation by 50%		

Back-up Slides

Revised EPAct Fuel Matrix

Projected Schedule Going Forward

- Launch of Phase 3 testing: Mid-February 2009
- Completion of Phase 3 testing: Early December 2009
- Reporting: December 2009 mid-March 2010

Phase 1 ^a 50F setup Phase 2 ^b 50F teardown Phase 3 ^a NREL fuels ^a CRC fuels NREL high emitter draft final report EPA/NREL review final report	Phase 1 ^a 50F setup Phase 2 ^b 50F teardown Phase 3 ^a NREL fuels ^a CRC fuels NREL high emitter draft final report EPA/NREL review final report	
14 weeks 3 weeks 9 weeks 2 weeks 17 weeks 17 weeks 16 2 weeks 4 weeks	14 weeks 3 weeks 9 weeks 2 weeks 17 weeks 4 weeks 4 weeks 4 weeks 4 weeks	
4 4 4 70 70 70 70 70 70 70 70 70 70 70 70 70	JAN 2010 5 12 19 26 2 7 8	JAN 2009 5 12 19 26
2 3 4	8 9 9 FEB 2010 2 9 1623	FEB 2009 2 9 16 23
υ ω 4	7 2 3 4 5 6 7 2010 MAR 2010 1623 2 9 16 23 30	MAR 2009
	4 5 6 7 8 9 10 11 MAR 2010 APR 2010 9 16 23 30 6 13 20 27	JAN 2009 FEB 2009 MAR 2009 APR 2009 MAY 2009 JUN 2009 JUL 2009 5 12 19 16 23 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 6 13 20 27
	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 APR 2010 MAY 2010 JUN 2010 JUL 2010 6 1 3 20 27 4 11 18 25 1 8 15 22 29 6 13 20 27	MAY 2009
	16 17 18 19 JUN 2010	JUN 2009
	17 18 19 20 21 22 23 24 10 2010 JUL 2010 8 15 22 29 6 13 20 27	JUL 2009
	8259	
	31 7 144 21 28	SEP 2009
	8 9 10 11 0 CT 2010	OCT 2009
	12 13 14 15 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10 1	AUG 2009 SEP 2009 OCT 2009 NOV 2009 DEC 2009 3 10 17 14 21 28 5 12 19 26 2 9 16 23 30 7 14 21 28 28 28 28 28 28 28
	6 47 1 2 3 5 14 2 12 3 5 14 2 12 8	DEC 2009